МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Система стандартов безопасности труда

СИСТЕМЫ ВЕНТИЛЯЦИОННЫЕ Методы аэродинамических испытаний

Occupational safety standards system. Ventilation systems. Aerodinamical tests methods

Постановлением Государственного комитета СССР по стандартам от 5 сентября 1979 г. № 3341 дата введения установлена

01.01.81.

Постановлением Госстандарта от 24.01.86 № 182 снято ограничение срока действия

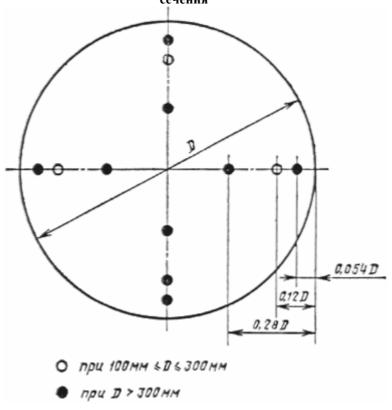
Настоящий стандарт распространяется на аэродинамические испытания вентиляционных систем зданий и сооружений.

Стандарт устанавливает методы измерений и обработки результатов при проведении испытаний вентиляционных систем и их элементов для определения расходов воздуха и потерь давления.

1. МЕТОД ВЫБОРА ТОЧЕК ИЗМЕРЕНИЙ

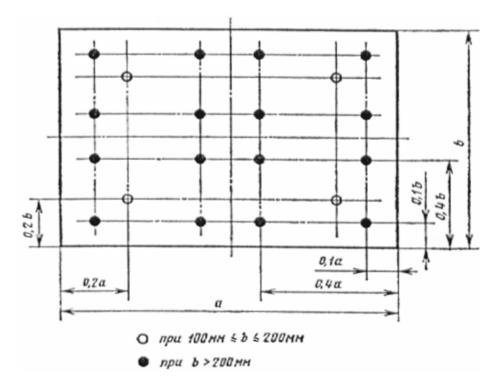
1.1. Для измерения давлений и скоростей движения воздуха в воздуховодах (каналах) должны быть выбраны участки с расположением мерных сечений на расстояниях не менее шести гидравлических диаметров $D_{\rm h}$, м за местом возмущения потока (отводы, шиберы, диафрагмы и т. п.) и не менее двух гидравлических диаметров перед ним.

При отсутствии прямолинейных участков необходимой длины допускается располагать мерное сечение в месте, делящем выбранный для измерения участок в отношении 3 : 1 в направлении движения воздуха.

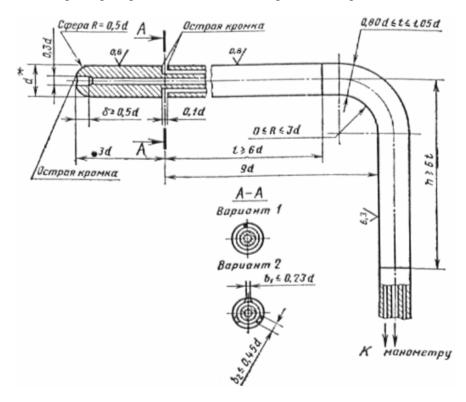

Примечание. Гидравлический диаметр определяется по формуле

$$D_{\rm h} = \frac{4F}{\Pi}$$
,

где F, м 2 и Π , м, соответственно, площадь и периметр сечения.

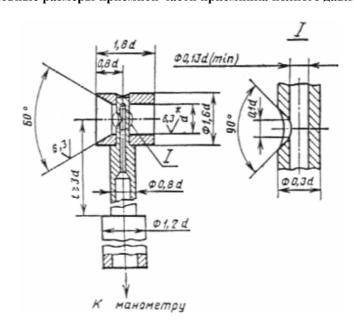

- 1.2. Допускается размещать мерное сечение непосредственно в месте внезапного расширения или сужения потока. При этом размер мерного сечения принимают соответствующим наименьшему сечению канала.
- 1.3. Координаты точек измерений давлений и скоростей, а также количество точек определяются формой и размерами мерного сечения по черт. 1 и 2. Максимальное отклонение координат точек измерений от указанных на чертежах не должно превышать ± 10 %. Количество измерений в каждой точке должно быть не менее трех.
- 1.4. При использовании анемометров время измерения в каждой точке должно быть не менее 10 с.

Координаты точек измерения давлений и скоростей в воздуховодах цилиндрического сечения


Черт. 1

Координаты точек измерения давлений и скоростей в воздуховодах прямоугольного сечения

Черт. 2


Основные размеры приемной части комбинированного приемника давления

 $[\]overline{*}$ Диаметр d не должен превышать 8 % внутреннего диаметра круглого или ширины (по внутреннему обмеру) прямоугольного воздуховода.

 Черт. 3

 Основные размеры приемной части приемника полного давления

 $^{^*}$ Диаметр d не должен превышать 8 % внутреннего диаметра круглого или ширины (по внутреннему обмеру) прямоугольного воздуховода.

2. АППАРАТУРА

- 2.1. Для аэродинамических испытаний вентиляционных систем должна применяться следующая аппаратура:
- а) комбинированный приемник давления для измерения динамических давлений потока при скоростях движения воздуха более 5 м/с и статических давлений в установившихся потоках (черт. 3);
- б) приемник полного давления для измерения полных давлений потока при скоростях движения воздуха более 5 м/с (черт. 4);
- в) дифференциальные манометры класса точности от 0,5 до 1,0 по ГОСТ 18140-84 и тягомеры по ГОСТ 2405-88 для регистрации перепадов давлений;
- Γ) анемометры по ГОСТ 6376—74 и термоанемометры для измерения скоростей воздуха менее 5 м/с;
 - д) барометры класса точности не ниже 1,0 для измерения давления в окружающей среде;
- е) ртутные термометры класса точности не ниже 1,0 по ГОСТ 13646—68 и термопары для измерения температуры воздуха;
- ж) психрометры класса точности не ниже 1,0 по ТУ 25.1607.054-85 и психрометрические термометры по ГОСТ 112-78 для измерения влажности воздуха.

Примечание. При измерениях скоростей воздуха, превышающих 5 м/с в потоках, где затруднено применение приемников давления, допускается использовать анемометры по ГОСТ 6376-74 и термоанемометры.

- 2.2. Конструкции приборов, применяемых для измерения скоростей и давлений запыленных потоков, должны позволять их очистку от пыли в процессе эксплуатации.
- 2.3. Для проведения аэродинамических испытаний в пожаровзрывоопасных производствах должны применяться приборы, соответствующие категории и группе производственных помещений.

3. ПОДГОТОВКА К ИСПЫТАНИЯМ

- 3.1. Перед испытаниями должна быть составлена программа испытаний с указанием цели, режимов работы оборудования и условий проведения испытаний.
- 3.2. Вентиляционные системы и их элементы должны быть проверены и обнаруженные дефекты устранены.
- 3.3. Показывающие приборы (дифференциальные манометры, психрометры, барометры и др.), а также коммуникации к ним следует располагать таким образом, чтобы исключить воздействие на них потоков воздуха, вибраций, конвективного и лучистого тепла, влияющих на показания приборов.
- 3.4. Подготовку приборов к испытаниям необходимо проводить в соответствии с паспортами приборов и действующими инструкциями по их эксплуатации.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- 4.1. Испытания следует проводить не ранее чем через 15 мин после пуска вентиляционного агрегата.
 - 4.2. При испытаниях, в зависимости от программы, измеряют:

барометрическое давление окружающей воздушной среды B_a , кПа (кгс/см²);

температуру перемещаемого воздуха по сухому и влажному термометру, соответственно, t и f_{φ} , °C;

температуру воздуха в рабочей зоне помещения t_a , °C;

динамическое давление потока воздуха в точке мерного сечения $p_{\rm di}$, кПа (кгс/м²);

статическое давление воздуха в точке мерного сечения $p_{\rm si}$, кПа (кгс/м²);

полное давление воздуха в точке мерного сечения p_i , к Π a (кгс/м²);

время перемещения анемометра по площади мерного сечения т, с;

число делений счетного механизма оборотов механического анемометра за время τ обвода сечения n.

Примечания:

- 1. Измерения статического или полного давлений производят при определении давления, развиваемого вентилятором, и потерь давления в вентиляционной сети или на ее участке.
- 2. Значение полного (p, кПа, кгс/м²) и статического (p_s, кПа, кгс/м²) давлений представляют собой соответствующие перепады полных и статических давлений потока с барометрическим давлением окружающей среды. Перепад считается положительным, если соответствующее значение превышает давление окружающей среды, в противном случае p и p_s отрицательны.
- 4.3. При измерении давлений и скоростей потока в воздуховодах и расположении мерного сечения на прямолинейном участке длиной не менее $8D_{\rm h}$ допускается проводить измерения статического давления потока воздуха и в отдельных точках сечения полного давления комбинированным приемником давления.
- 4.4. Зазоры между измерительными приборами и отверстиями, через которые они вводятся в закрытые каналы, должны быть уплотнены во время испытаний, а отверстия закрыты после проведения испытаний.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

5.1. На основе величин, измеренных в соответствии с программой, определяют: относительную влажность перемещаемого воздуха φ , %; плотность перемещаемого воздуха ρ , кг/м³ (кгс·с²/м³); скорости движения воздуха ν , м/с; расход воздуха L, м³/с;

потери полного давления в вентиляционной сети или в отдельных ее элементах Δp , к Π а (к Γ с/м 2);

коэффициент потерь давления вентиляционной сети или ее элемента ζ.

- 5.2. Относительную влажность перемещаемого воздуха определяют по показаниям сухого и влажного термометров в соответствии с паспортом прибора.
 - 5.3. Плотность перемещаемого воздуха определяют по формуле

$$\rho = \frac{B_a + p'}{RK_o(t + 273)},$$

где p' — статическое или полное давление потока, измеренное комбинированным приемником давления или приемником полного давления в одной из точек мерного сечения;

 K_{φ} — коэффициент, зависящий от температуры и влажности перемещаемого воздуха. Значение K_{φ} определяется по табл. 1.

Зависимость коэффициента $K_{\scriptscriptstyle \odot}$ от температуры и влажности перемещаемого воздуха

Таблица 1

t, °C	10		20		30		40		50	
φ , %	50	100	50	100	50	100	50	100	50	100
K_{φ}	0,998	1,003	1,000	1,005	1,004	1,012	1,010	1,025	1,020	1,040

5.4. Динамическое давление $p_{\rm d}$ кПа (кгс/м²) средней скорости движения воздуха определяют по измеренным в z точках (черт. 1 или 2) комбинированным приемником давления величинам динамических давлении $p_{\rm di}$ по формуле

$$p_d = \left(\frac{\sum_{i=1}^{z} p_{di}^{0.5}}{z}\right)^2.$$

5.5. Скорость движения воздуха $v_{\rm i}$, м/с в точке мерного сечения по измерениям динамического давления $p_{\rm di}$ определяют согласно формуле

$$v_{i} = \left(\frac{2}{\rho} p_{di}\right)^{0.5}.$$

5.6. Среднюю скорость движения воздуха $v_{\rm m}$, м/с, в мерном сечении по измерениям динамического давления в z точках (по черт. 1 или 2) определяют по формуле

$$v_{\rm m} = \left(\frac{2}{\rho} p_{\rm d}\right)^{0.5}$$

5.7. При измерениях анемометрами скорость движения воздуха в отдельных точках мерного сечения определяют по показаниям прибора n и графику индивидуальной тарировки прибора v (n); при этом среднюю скорость движения воздуха v_m определяют по формуле

$$v_{\rm m} = \frac{\sum_{i=1}^{z} v_{i}}{z}.$$

5.8. Объемный расход L, m^3/c , воздуха определяют по формуле

$$L=F\cdot v_m$$

5.9. Статическое давление $p_{\rm s}$ потока в мерном сечении определяют по следующим формулам:

$$\sum_{i=1}^{z} (p_i - p_{di})$$
 а) $p_s = \frac{i=1}{z}$ при измерениях полных и динамических давлений;

б)
$$p_{\rm S} = \frac{\displaystyle\sum_{i=1}^{z} p_{\rm Si}}{z}$$
 при измерениях статических давлений;

в)
$$p_{\rm s} = \frac{\sum\limits_{i=1}^{z} \left(p_{\rm i} - \rho \frac{v_{i}^{2}}{2}\right)}{z}$$
 при измерениях скоростей потока и полных давлений.

5.10. Полное давление p потока в мерном сечении рассчитывают по формулам

$$p = \frac{\sum\limits_{i=1}^{z} p_{i}}{z}$$
 или $p = \frac{\sum\limits_{i=1}^{z} (p_{si} + p_{di})}{z}$.

5.11. Потери полного давления элемента сети определяют по формуле

$$\Delta p = p_1 - p_2.$$

где p_1 и p_2 — полные давления, определенные по п. 5.10, в мерных сечениях 1 и 2, расположенных, соответственно, на входе в элемент и на выходе из него.

5.12. Потери полного давления элемента сети, расположенного на входе в сеть, определяют по формуле

$$\Delta p = p_2$$
.

5.13. Потери полного давления элемента сети, расположенного на выходе из сети, определяют по формуле

$$\Delta p = p_1$$
.

5.14. Коэффициент потерь давления элементов сети определяют по формуле

$$\zeta = \frac{\Delta p}{p_d}$$

где $p_{\rm d}$ — динамическое давление (по п. 5.4) в мерном сечении, выбранном в качестве характерного.

5.15. Динамическое давление $p_{\rm dv}$, кПа (кгс/м²), вентилятора определяют по формуле

$$p_{\rm dv} = \frac{\rho}{2} \left(\frac{L}{F_{\rm v}} \right)^2,$$

где F_{ν} — площадь выходного отверстия вентилятора.

5.16. Статическое давление p_{sv} , кПа (кгс/м²), вентилятора определяют по формуле

$$p_{\rm sv} = p_{\rm s2} - p_{\rm s1} - p_{\rm d1},$$

где p_{s1} и p_{s2} — соответственно статические давления в мерных сечениях 1 и 2 перед и за вентилятором, определенные по п. 5.9;

 $p_{\rm d1}$ — динамическое давление в мерном сечении 1, на входе в вентилятор, определенное по п. 5.4.

5.17. Полное давление вентилятора $p_{\rm v}$, кПа (кгс/м²), равно суммарным потерям Δp_{Σ} сети и определяется по формуле

$$p_{v} = p_{2} - p_{1}$$
.

Примечание. Безразмерные параметры, характеризующие аэродинамические свойства собственно вентилятора (его коэффициенты полного ψ_v , статического ψ_s и динамического ϕ_{dv} давлений, а также коэффициент расхода воздуха ϕ_v) определяют, если это предусмотрено программой испытаний, по формулам, приведенным в ГОСТ 10921-90.

5.18. В случаях, предусмотренных программой испытаний, производят расчет предельной погрешности определения расхода воздуха по результатам измерений. Порядок расчета при измерениях пневмометрическим насадком в сочетании с дифференциальным манометром дан в рекомендуемом приложении.

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1. При проведении аэродинамических испытаний вентиляционных систем должны соблюдаться требования безопасности согласно ГОСТ 12.4.021-75.
- 6.2. Проведение аэродинамических испытаний не должно ухудшать проветривание и приводить к скоплению взрывоопасной концентрации газов.

ПРИЛОЖЕНИЕ Рекомендуемое

РАСЧЕТ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЯ РАСХОДА ВОЗДУХА КОМБИНИРОВАННЫМ ПРИЕМНИКОМ ДАВЛЕНИЯ В СОЧЕТАНИИ С ДИФФЕРЕНЦИАЛЬНЫМ МАНОМЕТРОМ

Из уравнений пп. 4.3—4.8 следует:

$$L = F\left(\frac{2}{\rho}\right)^{0.5} \sum_{i=1}^{z} (p_{di})^{0.5}$$

При этом предельная относительная погрешность определения расхода воздуха в процентах выражается следующей формулой:

$$\delta_L = (2\sigma_L + \delta_{\varphi}),$$

где σ_L — среднеквадратичная относительная погрешность, обусловленная неточностью измерений в процессе испытаний;

 δ_{φ} — предельная, относительная погрешность определения расхода воздуха, связанная с неравномерностью распределения скоростей в мерном сечении; величины δ_{φ} даны в табл. 1 настоящего приложения. Величина σ_L представляется в виде:

$$\sigma_L = \left(4\sigma_D^2 + \frac{1}{4}\sigma_B^2 + \frac{1}{4}\sigma_t^2 + \frac{1}{4}\sigma_p^2\right)^{0.5},$$

где σ_D — среднеквадратичная погрешность определения размеров мерного сечения, зависящая от гидравлического диаметра воздуховода; при $100~{\rm mm} \le D_{\rm h} \le 300~{\rm mm}$ величина $\sigma_D = \pm 3~\%$, при $D_{\rm h} > 300~{\rm mm}$ $\sigma_D = \pm 2~\%$;

 $\sigma_{\rm p},~\sigma_{\rm B},~\sigma_{\rm t}$ — среднеквадратичные погрешности измерений, соответственно, динамического давления $P_{\rm d}$ потока, барометрического давления $B_{\rm a}$, температуры t потока, величины $\sigma_{\rm p},~\sigma_{\rm B},~\sigma_{\rm t}$ даны в табл. 2 настоящего приложения.

Пользуясь табл. 1 и 2 и приведенными формулами вычисляют предельную погрешность определения расхода воздуха.

 $\begin{tabular}{ll} $T{\it ad nuya}$ 1 \\ \hline \begin{tabular}{ll} $T{\it ad nuya}$$

Форма мерного сечения	Число точек измерений	δ , %, при расстоянии от места возмущения потока до мерного сечения в гидравлических диаметрах $D_{\rm h}$					
		1	2	3	5	> 5	
Круг	4	20	16	12	6	3	
	8	16	12	10	5	2	
	12	12	8	6	3	2	
Прямо-	4	24	20	15	8	4	
угольник	16	12	8	6	3	2	

Таблица 2

Среднеквадратичные погрешности $\sigma_{\rm p}, \sigma_{\rm B}, \sigma_{\rm t}$ показаний приборов

Показание прибора в долях	$\sigma_{\! p}, \sigma_{\! B}, \sigma_{\! t}, \%$, для приборов класса точности			
длины шкалы	10	0,5		
1,00	±0,5	±0,25		
0,75	±0,7	±0,24		
0,50	±1,0	±0,5		
0,25	±2,0	±1,0		
0,10	±5,0	±2,5		
0,05	±10,0	±5,0		

Пример. Мерное сечение расположено на расстоянии 3-х диаметров за коленом воздуховода

диаметром 300 мм (т. е. $\sigma_D = \pm 3$ %). Измерения производят комбинированным приемником давления в 8-ми точках мерного сечения (т. е. по табл. 1 $\delta_{\rm p} = +$ 10 %). Класс точности приборов (дифманометр, барометр, термометр) — 1,0. Отсчеты по всем приборам производятся, примерно, в середине шкалы, т. е. по табл. 2, $\sigma_{\rm p} = \sigma_{\rm B} = \sigma_{\rm t} = \pm 1,0$ %. Предельная относительная погрешность измерения расхода воздуха составит:

$$\delta_L = 2 \left(4.3^2 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1\right)^{0.5} + 10 = \pm 12 + 10 = +22 \%, -2 \%$$